2.1.2 导数的几何意义
函数y=f(x)在点x0处的导数f'(x0)在几何上表示曲线y=f(x)在点M0(x0,y0)处的切线的斜率,即k=tanα=f'(x0).
过点M0(x0,y0)且垂直于切线的直线称为点M0处的法线.
如果函数y=f(x)在点x0可导,则曲线y=f(x)在点M0(x0,y0)处的切线方程和法线方程分别为
y-f(x0)=f'(x0)(x-x0)

例5 求曲线y=lnx过点(e,1)的切线方程和法线方程.
解 由,得
,代入切线方程和法线方程,得

即 x-ey=0;
法线方程 y-1=-e(x-e),
即 ex+y-e2-1=0.